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Spin-blockaded quantum dots provide a unique setting for studying nuclear-spin dynamics in a nanoscale
system. Despite recent experimental progress, observing phase-sensitive phenomena in nuclear spin dynamics
remains challenging. Here we point out that such a possibility opens up in the regime where hyperfine
exchange directly competes with a purely electronic spin-flip mechanism such as the spin-orbital interaction.
Interference between the two spin-flip processes, resulting from long-lived coherence of the nuclear-spin bath,
modulates the electron-spin-flip rate, making it sensitive to the transverse component of nuclear polarization. In
a system repeatedly swept through a singlet-triplet avoided crossing, nuclear precession is manifested in
oscillations and sign reversal of the nuclear-spin pumping rate as a function of the waiting time between
sweeps. This constitutes a purely electrical method for the detection of coherent nuclear-spin dynamics.
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Due to their long coherence times, nuclear spins offer
unique opportunities to study quantum dynamics. While con-
ventional techniques using rf fields probe macroscopic
groups of spins, currently there is wide interest in the local
dynamics of nanoscale groups of spins. In particular, semi-
conducting quantum dots have emerged as a platform for
investigating the intriguing quantum many-body dynamics of
coupled electron and nuclear spins.1–8 Many experimental
achievements in this field rely on the phenomenon of spin
blockade, in which electrons must flip their spins in order to
pass through the system in accordance with the Pauli exclu-
sion principle.9 Such spin-blockaded transport is sensitive to
the nuclear-polarization-dependent Overhauser field, which
controls the energy splittings between electronic spin states.
This sensitivity affords an exciting opportunity to electrically
control and detect the states of nuclear spins.10,11

In this Rapid Communication, we propose a method
which can be used to electrically probe coherent nuclear phe-
nomena, such as Larmor precession or Rabi oscillations,
which are not easily probed by the Overhauser effect alone.
We identify a regime where transport is sensitive to all three
vector components of the local nuclear polarization, due to
coherent interplay between hyperfine coupling and an
electron-only spin coupling such as the spin-orbit
interaction.12,13 As we show, in this regime a variety of phe-
nomena which directly reveal coherent nuclear dynamics can
be observed. Recently observed oscillations of the nuclear
pumping rate controlled by nuclear Larmor precession14 in-
dicate that this unexplored regime is now within experimen-
tal reach.

Here we investigate these phenomena in a two-electron
double quantum dot in a uniform magnetic field. The two-
electron singlet and m= �1 triplet states are coupled via the
difference of hyperfine fields due to transverse nuclear polar-
ization in the two dots, �Bnuc,�.10,11,15 Without an additional
coupling, the electron-spin-flip rate depends only on
��Bnuc,�� and not on its orientation in the XY plane.15

The situation becomes considerably more interesting
when singlet-triplet transitions can occur due to either the
spin-orbit or the hyperfine interaction �see Fig. 1�. In this
case, we find that the probability of electron-spin flip de-

pends on the angle � of the nuclear polarization measured in
the XY plane relative to a fixed axis determined by the spin-
orbit interaction. Such a dependence makes electron trans-
port sensitive to the phase of nuclear-spin precession. Below,
we analyze this phenomenon for a Landau-Zener-type pro-
cess, occurring when the electronic system is swept through
a singlet-triplet level crossing, as employed, e.g., in Refs. 14
and 16 and depicted in Fig. 1�b�. To make contact with ex-
periment, we focus, in particular, on resulting signatures in
nuclear-spin polarization. Strikingly, we find robust oscilla-
tions in the nuclear-spin pumping rate which result from
nuclear precession and survive even after averaging over the
distribution of random initial nuclear-spin states. Note that
other types of electron-only coupling such as Zeeman cou-
pling to the nonuniform field of a micromagnet17 can pro-
duce analogous effects.

FIG. 1. �Color online� Coherent interplay of hyperfine and spin-
orbit-mediated transitions. �a� Interdot tunneling in the triplet state
is suppressed by Pauli exclusion but can be mediated by the hyper-
fine and spin-orbit interactions which do not conserve electron spin.
�b� When exchange energy compensates Zeeman energy, the singlet
and the triplet levels �S� and �T+� exhibit an avoided crossing with
splitting �v��= �vSO+vHFei��. �c� Behavior near the S-T+ crossing,
controlled by �v��, is sensitive to the relative phase � between spin-
orbit and hyperfine matrix elements. �d� Phase-dependent transition
probability, Eq. �3�, with vSO=0.4��� and vHF=0.6���.
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The origin of the spin-angle dependence can be under-
stood heuristically by analyzing the avoided crossing that
opens near the degeneracy of triplet and singlet levels �T+�
and �S� in nonzero magnetic field, circled in Fig. 1�b�. Due to
the spin-orbit interaction, tunneling between dots is accom-
panied by a rotation of electron spin18 which introduces a
nonzero spin-flip amplitude. In addition, the hyperfine inter-
action between electron and nuclear spins allows electronic
transitions accompanied by nuclear-spin flips, described by
the effective Hamiltonian HHF=A+�S��T+�+A−�T+��S� with
A�=�i=1

NnucgiIi
�. The magnitude and sign of each coupling

constant gi depends on the location of nucleus i �positive in
dot 1 and negative in dot 2�.

Taking advantage of the fact that the number of nuclei
interacting with the electrons is very large, Nnuc�O�106�, we
note that the commutator 	A+ ,A−
 is typically smaller than
A+A− by a factor of order 1 /Nnuc

1/2. This allows us to treat A+

as a nearly classical variable, A+�vHFei�. Here vHF is pro-
portional to the magnitude of the transverse hyperfine differ-
ence field �Bnuc,� and � describes its orientation in the XY
plane.

Together, the spin-orbit and hyperfine pieces provide a
matrix element between singlet and triplet states

v� � �S�H�T+� = vSO + vHFei�. �1�

Evolution in the ��S� , �T+� subspace near the level crossing is
described by the 2�2 Hamiltonian

HST+
= � 1

2� v�
�

v� − 1
2�
�, ��t� = �T+

�t� − �S�t� , �2�

where �T+
and �S are the energies of the diabatic �S� and �T+�

states. The level detuning ��t� can be controlled by electro-
static gates and/or magnetic field.

We consider the case where the system is initialized to the
“�0,2�” singlet state �S� with both electrons residing in the
right dot �large positive ��, and then swept through the
avoided crossing to the “�1,1�” charge regime with one elec-
tron on each dot 	see Fig. 1�b�
. For a constant sweep rate
�= �d� /dt�, the electron-spin flip in such a model is inter-
preted as a Landau-Zener transition occurring with probabil-
ity 	see Fig. 1�d�


PLZ = 1 − exp�− 2��vSO + vHFei��2/��� , �3�

where PLZ is the probability to remain in the ground state.
The explicit dependence on the phase � of nuclear polariza-
tion, which enters through the matrix element v�, shows the
singlet/triplet transition probability’s sensitivity to the trans-
verse nuclear polarization vector.

This model provides a useful heuristic for understanding
electron-spin dynamics, in particular, for situations where the
nuclear-spin state is characterized by a well-defined azi-
muthal angle �. However, to understand the behavior with
more general initial states and to account for the effects of
backaction on the nuclei, we must examine the quantum
many-body dynamics of coherently coupled electron and
nuclear spins. In particular, we are interested in dynamical
nuclear polarization �DNP� which is generated by nuclear
precession around the in-plane component of electron spin
polarization. By solving this problem below, we will further
justify the form of Eq. �1� and will obtain the electron and
nuclear-spin-flip rates.

A key new feature here is the relaxed selection rule gov-
erning nuclear pumping: due to spin-orbit coupling, electron-
spin flips may occur with or without a compensating nuclear-
spin flip. Although these two processes apparently lead to
orthogonal final states, long-lived coherence of the nuclear-
spin bath allows interference between different transition se-
quences �see Fig. 2�. Moreover, a single electron can change
the total nuclear polarization by an amount �m that can be
larger than 1, and of either sign.

At this point, it is convenient to map the problem onto the
bipartite one-dimensional �1D� quantum walk shown in Fig.
2�a�, where each unit cell is labeled by m, the z projection of
the total nuclear spin Iz=�iIi

z. In doing so, 	Iz ,A�
 remains
nonzero. Intracell hopping between internal states T and S,
characterized by �m=0, describes a spin-orbit transition oc-
curring with amplitude vSO. Intercell hopping, characterized
by �m= �1, describes a hyperfine transition that occurs with
the amplitude vHF= �T ,m−1�HHF�S ,m�. Initially, we consider
sweeps which are fast compared to the nuclear Larmor pe-
riod, and so neglect the nuclear Zeeman energy.

Because Nnuc is large, the value of vHF will change very
little during the course of a few sweeps, and we treat it here
as a constant. However, the initial values of vHF may differ
from one run to another with a statistical distribution of the
form p�v�	ve−v2/s2

, where s is a constant. Additionally, be-
cause the typical values of total nuclear spin will be large, of
order �Nnuc, we may take the ladder of allowed values of m
to be infinite while the total number of sweeps is not too
large.

The state of the system evolves according to

i�
̇m
T = vSO
m

S + vHF
m+1
S + 1

2��t�
m
T ,

i�
̇m
S = vSO
m

T + vHF
m−1
T − 1

2��t�
m
S . �4�

At time t0, the system is initialized to the singlet state with
polarization m=m0: 
m

S =�m,m0
, 
m

T =0. The expected change
in polarization,

FIG. 2. �Color online� Quantum walk model of electron-nuclear-
spin dynamics near the S-T+ crossing, Eq. �4�. �a� Unit cells are
labeled by m, the z component of total nuclear spin. Intracell and
intercell hopping correspond to spin-orbit and hyperfine transitions
with matrix elements vSO and vHF, respectively. �b� Expected
change in nuclear polarization ��m�, Eq. �9�. The star indicates the
optimal sweep rate �� along the dashed line.
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��m� = �
m

�m − m0�Pm; Pm = �
m
S �2 + �
m

T �2, �5�

is determined by the probabilities �Pm to find the nuclear
spin with z-projection m in the final state at time tF after the
sweep. For convenience we take the �nonclassical� initial
nuclear state to be an eigenstate of Iz but the framework can
be applied for more general states.

In the Fourier representation �
m�= 1
2� �d�e−im��
��,

where �
m� and �
�� are two-component spinors �
m
T ,
m

S �T,
and �
�

T ,
�
S�T, the dynamics for different � components de-

couple. We obtain

i�
d

dt
�
�� = HST+

�
�� , �6�

where HST+
is given in Eq. �2�. Here the parameter � plays

the role of the azimuthal angle of �Bnuc,� in the classical
problem, Eq. �1�. Indeed, a state 
�

S,T	���−�0� is a coherent
state concentrated near �0.

To calculate ��m�, we make use of the relation m�
m�
= i

2� �d� d
d� �e−im���
��. Integrating by parts to move the de-

rivative onto �
��, we find

��m� =
1

2�i
� d� �
��

d

d�
�
�� , �7�

where without loss of generality we have taken m0=0.
To evaluate the expression in Eq. �7�, we must solve for

the two-level dynamics of �
�� under the time-dependent
Hamiltonian �2�. We can write the evolution operator as

U��� = � a� b�ei�0���

− b�
�e−i�0��� a�

� �, �a��2 + �b��2 = 1, �8�

where �0���=arg	v�
, with v� defined in Eq. �1� 	see also
Fig. 1�c�
. With this parametrization, we have a�=a−�, and
b�=b−�.

The initial state �
�
�0��= �0,1�T evolves into �
��

= �b�ei�0��� ,a�
��T. Because a� and b� are even functions of �,

the only term that contributes to ��m� is that generated when
the derivative acts on ei�0��� in Eq. �7�, giving

��m� = −
1

2�
� d��d�0

d�
��b��2, �9�

where �b��2 is the singlet-triplet transition probability in the �
channel. Comparing this result to that for the net electron-
spin-flip probability, given by Pel=

1
2� � �b��2d�, we note that,

unlike the situation where only the hyperfine interaction is
present, here there is no simple relationship between the
electron and nuclear-spin-flip rates.

The analysis leading to Eq. �9� is valid for arbitrary time
dependence ��t�, and, in particular, can even describe cases
involving multiple S-T crossings. Remarkably, for very slow
sweeps the change in polarization becomes sharply quan-
tized. Indeed, since �b��2→1 in the adiabatic limit, the
integral in Eq. �9� is equal to a winding number: ��m�
=− 1

2� �d�0. Thus ��m�=−1 or 0 if v� does or does not wind
around the origin as � traverses the Brillouin zone, depend-
ing on the relative magnitudes of vHF and vSO.19 The sign is
negative because electron transitions from S to T+ flip
nuclear spins from up to down.

The quantity ��m� exhibits interesting dependence on the
sweep speed, which can be analyzed most straightforwardly
for linear sweeps ��t�=−�t, when �b��2 is given by the
Landau-Zener formula �3�. Due to the absence of dynamics
for very fast sweeps, and since ��m�=0 for very slow
sweeps in the region �vSO� �vHF�, the polarization efficiency
is a nonmonotonic function of sweep rate 	see Fig. 2�b�
. In
the limit of weak hyperfine interaction, �vHF�� �vSO�, expand-
ing the exponential in Eq. �3�, we find

���m�� � �vHF/vSO�2�e−�, � = 2�vSO
2 /�� . �10�

This expression attains its maximum value ���m��max
=vHF

2 / �evSO
2 � at the optimal sweep rate ��=2�vSO

2 /�.
Next we consider a generalization to multiple sweeps and

show that dynamical polarization is sensitive to nuclear Lar-
mor precession between sweeps. We focus on a sequence of
two identical gate sweeps, where each individual sweep is
short on the scale of the nuclear Larmor time, but with a
waiting time �t between sweeps long enough to allow
nuclear-spin precession. Individual sweeps may pass through
the S-T crossing one or more times. Assuming that only one
nuclear species contributes to the hyperfine field, the change
in nuclear polarization due to the two sweeps is given by

��m� =� d�

2�i
�U−1�� U�, U = U�� + ���WU��� , �11�

where U��� is the evolution matrix for a single sweep, given
by Eq. �8�, W is the electronic evolution operator for the
waiting interval �t, the expectation value is taken over the
state �
�

�0��= �0,1�T, and ��=�L�t is the precession angle
with �L the nuclear Larmor frequency. Due to the periodicity
of U��� in �, Eq. �8�, ��m� exhibits periodic oscillations in
�� which are a direct manifestation of coherent nuclear po-
larization dynamics.

The analysis is simple when the detuning ��� is very large
in the interval between sweeps. Then W�exp�i��3�, where
the phase � is large and very sensitive to any fluctuations in
the waiting time �t or other parameters of the system. The
resulting randomness of � completely suppresses coherence
in the electronic state between sweeps while nuclei remain

FIG. 3. �Color online� Polarization due to a round trip through
the S-T+ crossing with vHF=0.6, vSO=0.4, �0=50, and precession
��=�L�t between forward and return sweeps, Eq. �13�. Here �L is
the nuclear Larmor frequency and �t is the waiting time. Dashed
lines show ��m� calculated using �0��� and the dynamical phase,
Eq. �14�, neglecting Stokes phase. The oscillation phase shifts by

� /2 for faster sweeps where
d�ad

d� is small �see inset�. Units are
chosen with �=1.
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coherent. For demonstration, below we choose the particular
protocol ��t�=��tn− t�, for �t− tn���, and �=� otherwise,
where n=1,2, and ���t= t2− t1 with t1 and t2 the times of
passage through the avoided crossing.

For this experimentally relevant case, it is helpful to think
of the matrix products defining U and U−1 in Eq. �11� as sums
over amplitudes associated with all possible histories of S-T
transitions. Fast electron decoherence between sweeps sup-
presses the contribution of terms arising from nonidentical
histories in U and U−1, leaving behind a sum of classical
probabilities of all trajectories. Starting with the singlet ini-
tial state �0,1�T, and summing over all final states, we find

��m� = �− �1,1���� d�

2�
M�� + ���M����0,1�T�

�=0
,

M��� � � 1 − p��� p���e��d�/d��

p���e−��d�/d�� 1 − p���
� , �12�

where � is an auxiliary variable introduced for bookkeeping
and p���= �b��2 is the transition probability in the � channel
for a single sweep. Here the phase ���� is the sum of the
geometric part �0���=arg	v�
, the Stokes phase �s���, see,
e.g., Ref. 20, and the dynamical phase �ad���= 1

��−�
�

�E��t ,��dt associated with adiabatic evolution on a single
branch of the two-level spectrum of Hamiltonian HST+

, Eq.
�2�, with E�� ,��=−��� /2�2+ �v��2. Equation �12� then gives

��m� = −� d�

2�
�d�

d�
p��� +

d��

d�
	1 − 2p���
p����� , �13�

where p����= p��+��� , �����=���+���.
The two terms in Eq. �13� count the contributions from

the two sweeps. The factor 1−2p��� accounts for the fact
that a transition from S to T on the first sweep reverses the
direction of nuclear-spin flips in the second sweep. Oscilla-
tions and sign reversal of ��m� as a function of the preces-
sion angle �� are clearly visible in Fig. 3, where we have
used direct numerical integration to find the transition ampli-
tudes b��� needed to evaluate the expression in Eq. �13�.

The dynamical phase contributes to ��m� through

d�ad

d�
= − �

−�

� dt

�

�E��t,��
��

=
4vSOvHF

��
sin � sinh−1 ��0�

2�v��
, �14�

where d�ad /d� grows logarithmically with the range of de-
tunings 2�0 spanned by the sweep. Note that �E /�� is the

group velocity in the Bloch band corresponding to the 1D
quantum walk, Fig. 2�a�.

This contribution describes the DNP buildup at times long
after the level crossing. The in-plane component of electron
spin maintains a nonzero average value due to the presence
of the spin-orbit interaction. While this remnant electron spin
polarization can be small, its influence on nuclear polariza-
tion accumulates over a long time, as indicated by the 1 /�
dependence. As a result, this contribution to DNP typically
dominates over that of the geometric phase �0���, see Fig. 3.

Equation �11� can be readily extended to arbitrary series
of nonidentical sweeps. If we take into account classical
noise in the detuning ��t� during each sweep, the primary
effect is to flatten the function p���, causing it to saturate
toward the value 1/2 for all �. Because the qualitative form
of p��� is preserved, however, oscillations resulting from the
geometric phase contribution d�0 /d� survive under quite
general circumstances.

Resonant effects at the nuclear Larmor frequency also can
be seen directly in the time dependence of electron transport
properties. As the transverse polarization precesses in time,
the matrix element v� traces out the dashed circle shown in
Fig. 1�c�, leading to a modulation of �v�� at the nuclear Lar-
mor frequency. This effect can be detected as an ac modula-
tion of conductance �current� in the system or as a correlation
between the electron-spin-flip probabilities on successive
sweeps through the avoided crossing. Such measurements
would constitute a purely electrical detection of nuclear-spin
dynamics.

In summary, we have shown that the coherent evolution
of nuclear spins in quantum dots can be observed through
oscillations and sign reversal of the nuclear-spin pumping
rate, which occur due to the coherent interplay between hy-
perfine and spin-orbit couplings. Recent observations indi-
cate that this interesting regime is now within experimental
reach, opening a variety of possibilities to explore many-
body spin dynamics in the solid state.
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